Hex1: a new human Rad2 nuclease family member with homology to yeast exonuclease 1.

نویسندگان

  • D M Wilson
  • J P Carney
  • M A Coleman
  • A W Adamson
  • M Christensen
  • J E Lamerdin
چکیده

Nucleolytic processing of chromosomal DNA is required in operations such as DNA repair, recombination and replication. We have identified a human gene, named HEX1 forhumanexonuclease 1, by searching the EST database for cDNAs that encode a homolog to the Saccharomyces cerevisiae EXO1 gene product. Based on its homology to this and other DNA repair proteins of the Rad2 family, most notably Schizosaccharomyces pombe exonuclease 1 (Exo1), Hex1 presumably functions as a nuclease in aspects of recombination or mismatch repair. Similar to the yeast proteins, recombinant Hex1 exhibits a 5'-->3' exonuclease activity. Northern blot analysis revealed that HEX1 expression is highest in fetal liver and adult bone marrow, suggesting that the encoded protein may operate prominently in processes specific to hemopoietic stem cell development. HEX1 gene equivalents were found in all vertebrates examined. The human gene includes 14 exons and 13 introns that span approximately 42 kb of genomic DNA and maps to the chromosomal position 1q42-43, a region lost in some cases of acute leukemia and in several solid tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DmGEN, a novel RAD2 family endo-exonuclease from Drosophila melanogaster.

A novel endo-exonuclease, DmGEN (Drosophila Melanogaster XPG-like endonuclease), was identified in D.melanogaster. DmGEN is composed of five exons and four introns, and the open reading frame encodes a predicted product of 726 amino acid residues with a molecular weight of 82.5 kDa and a pI of 5.36. The gene locus on Drosophila polytene chromosomes was detected at 64C9 on the left arm of chromo...

متن کامل

Initiation of DNA damage responses through XPG-related nucleases.

Lesion-specific enzymes repair different forms of DNA damage, yet all lesions elicit the same checkpoint response. The common intermediate required to mount a checkpoint response is thought to be single-stranded DNA (ssDNA), coated by replication protein A (RPA) and containing a primer-template junction. To identify factors important for initiating the checkpoint response, we screened for genes...

متن کامل

Structure of Bacteriophage T4 RNase H, a 5′ to 3′ RNA–DNA and DNA–DNA Exonuclease with Sequence Similarity to the RAD2 Family of Eukaryotic Proteins

Bacteriophage T4 RNase H is a 5' to 3' exonuclease that removes RNA primers from the lagging strand of the DNA replication fork and is a member of the RAD2 family of eukaryotic and prokaryotic replication and repair nucleases. The crystal structure of the full-length native form of T4 RNase H has been solved at 2.06 angstroms resolution in the presence of Mg2+ but in the absence of nucleic acid...

متن کامل

Separable roles for Exonuclease I in meiotic DNA double-strand break repair.

Exo1 is a member of the Rad2 protein family and possesses both 5'-3' exonuclease and 5' flap endonuclease activities. In addition to performing a variety of functions during mitotic growth, Exo1 is also important for the production of crossovers during meiosis. However, its precise molecular role has remained ambiguous and several models have been proposed to account for the crossover deficit o...

متن کامل

RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice.

We have cloned a new member of the RAD2/XPG nuclease family, OsGEN-L (OsGEN-like), from rice (Oryza sativa L.). OsGEN-L possesses two domains, the N- and I-regions, that are conserved in the RAD2/XPG nuclease family. Database searches and phylogenetic analyses revealed that OsGEN-L belongs to class 4 of the RAD2/XPG nuclease family, and OsGEN-L homologs were found in animals and higher plants. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 16  شماره 

صفحات  -

تاریخ انتشار 1998